The 5th Korean-US NanoForum: Nanobiotechnology.

Jeju Island, April 17th-19th, 2008

Focal Adhesion Mechanotransduction: Cellular Response to Nanoscale Mechanical Factors

Nathan J. Sniadecki, Ph.D.

Mechanical Engineering Department University of Washington Seattle, Washington

Mechanotransduction at Focal Adhesions

Focal adhesions are force sensitive integrin-receptor complexes (100 nm - 1 μ m).

Cell

Structural proteins link integrins to actin to develop traction force for cellular migration or contraction

Signaling proteins activated with integrinmatrix binding and force

Traction forces or external forces are transduced into biological signals that can regulate cell function

Traction Force

External Force

Traction Force Sensor Array

Arrays of flexible microposts to measure traction forces

Made with soft lithography of polydimethlysiloxane (PDMS)

3-µm diameter, 10-µm height microposts

Magnetic Microposts

Magnetic Force

Sensor and Actuator System

Measure traction forces with microposts

$$F_{tr} = K\delta = \left(\frac{3\pi E^{d}}{64L^{3}}\right)\delta$$

• Apply forces with magnetic nanowires $\tau = \mu_{\perp} \cdot B$ $F_{Mag} = \frac{3\tau (L + L_w)}{2(L^2 + L_w L + L_w^2)}$

Cobalt Nanowires

- 300 nm diameter, 5-7 µm long
- High magnetic moment (μ) along long axis

N.J. Sniadecki, et al., *PNAS*, 2007, 104:114553-8 N.J. Sniadecki, et al., *Rev Sci Instr*, 2008, 79, 044302

Magnetic Nanowires

Vibrating Sample Magnetometer

N.J. Sniadecki, et al., *PNAS*, 2007, 104:114553-8 N.J. Sniadecki, et al., *Rev Sci Instr*, 2008, 79, 044302

Fabrication

Nanowires magnetically embedded into PDMS mold

Magnetic Stimulation

Magnetic actuation for external force

Focal adhesion protein recruitment

Stimulation relaxes traction forces

N.J. Sniadecki, et al., PNAS, 2007, 104:114553-8

Spatial Response

Relaxation occurs at remote sites along cell periphery but not at interior posts

Binomial Analysis:

Edge posts have significant loss versus interior posts (p<0.05)

Post local to magnetic posts have no significant difference to distal posts (p>0.25)

N.J. Sniadecki, et al., *PNAS*, 2007, 104:114553-8

Nanoposts

High Spatial Resolution of Traction Forces

M.T. Yang, N.J. Sniadecki, C.S. Chen, Adv Mat, 2007, 104:114553-8

Acknowledgements

Nathan J. Sniadecki Sangyoon Han Aimi Ahmad Shukri

Collaborators: Christopher S. Chen (UPenn) Daniel H. Reich (JHU)

SUPPORT:

National Institutes of Health National Science Foundation The Hartwell Foundation UW Royalty Research Fund

Micropost Force Sensors

Measurements:

Posts deflects as simple cantilever springs:

$$\mathbf{F} = K\delta = \left(\frac{3\pi \mathrm{Ed}^4}{64\mathrm{L}^3}\right)\,\delta$$

- F ... Cellular Force
- *K*... Spring Stiffness (32 nN/µm)
- $\delta \dots$ Displacement
- E ... Elasticity Modulus of PDMS
- d ... Post diameter (3 µm dia)
- L ... Post Length (10 μ m)

J. L. Tan, et al., *Proc. Nat. Acad. Sci.*, 2003, 100:1484-1489 C. A. Lemmon, et al., *Mech. & Chem. Biosystems.*, 2005, 2(1) 1-16